小学数学思维训练题及答案解析

 



小学数学思维训练“十佳”题(3)

1、分数3/71的分子和分母同时加上一个相同的数,使分数变成1/5。问:这个加上的数是多少?(类比转化法)

【分析与解答】本题的要求是要我们求分子和分母同加上什么数,使分数的分母是分子的5倍。因为分子和分母不管加上什么数,它们的差71—3=68是不变的,所以,根据这一特点,我们一定会想起本题和年龄问题相类似。例如,儿子今年6岁,父亲33岁,问几年以后父亲的年龄正好是儿子的4倍?父亲与儿子的年龄差是27岁,这个差是不变的。几年后父亲的年龄是儿子的4倍,27岁相当于几年后儿子年龄的(4—1=)3倍。用除法就可以求出:(33—6)÷(4—1)=9岁,9—6=3年,也就是3年后父亲的年龄是儿子的4倍。

同理,本题中分母与分子的差68相当于新分子的(5—1=)4倍,用除法可求出新分子,进而再求出分子和分母同加上的是什么数。(71—3)÷(5—1)—3=14,即分子与分母同时加上14,可以使分数变成1/5。

2、某商品76件,出售给33位顾客,每位最多买3件,买1件按定价,买2件降价10%,买3件降价20%。最后结算,平均每件恰好按原价的85%出售,那么买3件的顾客有多少人?(类比转化法)

【分析与解答】题目已给出平均数85%,可以作为比较的基准。1人买3件少5%×3;1人买2件多5%×2;1人买1件多15%×1。1人买3件与1人买1件组成A组,即按1:1的比例;2人买3件与3人买2件组成B组,即按2;3的比例。A组是2人买4件,每人平均买2件;B组是5人买12件,每人平均买2.4件。

现在已经建立了一个鸡兔同笼模型的问题:总脚数76,总只数33,兔脚数2.4,鸡脚数2。B组人数是(76—2×33)÷(2.4—2)=25人,其中买3件的有25÷(2+3)×2=10人,买2件的有25÷(2+3)×3=15人;A组人数是33—25=8人,其中买3件的有4人,买1件的有4人。也就是说买3件的一共有10+4=14人。

3、两人轮流从1,2,3,……,9这9个数字中取数。每次取1个,谁先取的数中有3个数的和为15就算赢家。如果第1个人取的数是5,那么第2个人应该取几才能使自己立于不败之地?(类比转化法)

【分析与解答】这个问题实际上是“井字棋”游戏,乙的对策如果不对,会导致失败。本题条件中的“和为15”,使我们联想到“三阶幻方”,它的每行、每列及对角线的和都是15。故本题等价于甲乙二人轮流将黑白二色棋子放入九宫格中,哪一方放入的棋子先成一行(横行、竖行和斜行)者为胜。甲先占了中间一格,乙应选哪一格才能保证自己不败?

  假设乙选择边上的位置,比如选3,则甲选4,乙只好选6。甲再选2,这时8、9这两个位置乙只能选一个,甲必得其一,这样甲就必胜无疑了。

  当甲选5时,乙应选九宫格中位角上的数字,即应选2、4、6、8中的一个,才能使自己立于不败之地。

4、21个球队用淘汰制决定冠军,总共要赛多少场?(逆推法)

【分析与解答】淘汰制就是每两个队比赛一场淘汰一个队,依此类推,赛到最后一对,胜利者就是冠军。解答此题的一般是顺推法,比较复杂,如果用逆推法就简单、巧妙得多。

 因为淘汰一个队要赛1场,总共是21个队,而获得冠军的只有1个队,也就是说要淘汰20个队,总共要赛20场。

5、一份试卷共25道题。每一道题给出4个答案,其中只有一个正确。要求考生把正确的选出来,每选对一题得4分,不选或错选扣1分。如果一个学生得90分,那么他做对了几道题?(逆推法)

【分析与解答】此题按正向思维的方法解,很难,要不就用假设法。如果用逆推法就简单、巧妙得多。因为选错或不选扣1分,与做对相比,损失5分,得90分的人被扣了10分,这就是选错或不选的有2道题,所以选对了23题。

6、一年级和六年级共100人摘了100千克茶叶,六年级每人摘3千克,一年级每3人摘1千克,问一年级和六年级各有多少人?(分组法)

【分析与解答】学生一般用假设法来解答这类题。如果用分组法解答此题就更简单、更容易理解。

 因为六年级1人摘3千克,一年级3人摘1千克,所以把六年级的1人和一年级的3人分为一组,这4人可以摘茶叶4千克,100千克里有几个4千克,就有几组学生,有几组就有几名六年级的学生。100÷(3+1)=25人,100—25=75人。

7、甲乙二人做换棋子游戏,甲有100个棋子,乙有20个棋子。如果甲每次给乙5个棋子,乙再还给甲3个棋子,那么按照这样的方法连续调换多少次,乙的棋子是甲的3倍?(抓不变量)

【分析与解答】此题如果我们按照甲的棋子每次减少(5—3)个,乙的棋子每次增加(5—3)个,一步一步地推算,解答起来就很麻烦。如果能抓住“和不变”进行思考,问题就简单了。当“乙的棋子是甲的3倍”时,则两人共有的棋子(100+20)个就相当于甲这时所有棋子的(3+1)倍。(100+20)÷(3+1)=30个,(100—30)÷(5—3)=35次。

8、龟兔进行10000米赛跑,兔子的速度是龟的速度的5倍,当它们从起点一起出发后,龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时,龟已经领先它5000米。兔子奋起直追,但龟到达终点时,兔子仍落后100米,那么兔子睡觉期间龟跑了多少米?(灵感思维)

【分析与解答1】假定兔子不睡觉(这是巧妙之处),当龟跑完全程10000米时,兔子应跑10000×5=50000米,但实际上只跑了10000—100=9900米,少跑了50000—9900=40100米,这40100米正是兔子睡觉所耽误的路程。因此在兔子睡觉期间龟跑了40100÷5=8020米。

【分析与解答2】假定兔子一次性跑到离终点100米处在睡觉(这是巧妙之处),此时兔子跑了10000—100=9900米,龟跑了9900÷5=1980米,剩下10000—1980=8020米,这正是在兔子睡觉期间龟跑的路程。我们不难发现,题目中的条件“5000米”是多余的。

9、把14拆成几个自然数的和,再求出这些数的乘积,如何拆可使乘积最大?(极端思维)

【分析与解答】十分明显,这样的数是很多的,我们不可能也没有必要一一找,如果用极端思维,情况就变得十分简单了。首先把14这个数推向最大的一端,拆的个数要尽可能多,多一个可多乘一次,接着把加数推向最小一端:加数不宜超过4,比如5拆成2和3,则2×3>5,这就说明加数大于4的,要尽量拆小;但不应出现1,因为1与任何数的乘积仍为原数;另外在所拆的数中,2的个数不能多于2,因为2×2×2<3×3。

这样14应尽可能拆成3,因为4×3=12,所以14拆成了3、3、3、3、2时,这些数的乘积最大,其乘积为3×3×3×3×2=162。

10、有一天,某商店估计将进货单价为90元的某商品按100元售出后,能卖出500个。已知这种商品每个涨价1元,其销售量就减少10个,为了使这一天能赚得更多利润,售价应定为每个多少元?(极端思维)

【分析与解答】这道题目的数量关系比较复杂,而题目所给的条件不够充分,若用一般的方法去分析解答,看来比较困难。我们不妨抓住题目中的“涨价”和“销量减少”这两个极端,问题就容易解答了。

因为按每个100元出售,能卖出500个,每个涨价1元,其销量减少10个,所以,这种商品是按单价90元进货,共进了600个。现把600个商品按每份10个,可分成60份,因每个涨价1元,销售就减少1份(即10个);相反,每个减少1元,销售就增加1份。所以,每个涨价的钱数与销售的份数之和是不变的(为60),根据等周长长方形面积最大原理可知,当把60分为两个30时,即每个涨价30元,卖出30份,此时有最大利润。因此,每个售价定为90+30=120元时,这一天能获得最大利润。