小学数学思维训练题及答案解析

 


小学数学思维训练“十佳”题(4)

1、猜猜是几?

一个三位数,写在一张纸上,倒过来看是正着看的1.5倍,正着看是倒过来看的2/3,这个三位数是几?

【分析与解答】这个三位数是666。其实,只要你稍加思索,就可以想出来了。这道题如果要求找一个一位数,那就是6;找一个两位数,则是66;找一个四位数,则是6666,依此类推。

2、一筐苹果

入冬前,妈妈买来了一筐苹果,清理时,发现这筐苹果2个、2个地数,余1个;3个、3个地数,余2个;4个、4个地数,余3个;5个、5个地数,余4个;6个、6个地数,余5个。你知道这筐苹果至少有多少个吗?

【分析与解答】根据题目条件,可以知道,这筐苹果的个数加1,就恰好是2、3、4、5、6的公倍数。而题目要求“至少有多少个”,所以,苹果的个数应该是2、3、4、5、6的最小公倍数减去1。[2,3,4,5,6]=60   60-1=59  即这筐苹果至少有59个。

3、有这样的数吗?

小明异想天开地提出:“世界上应该存在这样两个数,它们的积与它们的差相等。”他的话音刚落,就引起了同学们的哄堂大笑,大家都觉得这是不可能的。但是,世界上有些事情往往产生于一些怪想法。小明的想法,后来竟被同学们讨论证实了。你能找到这样的两个数吗?告诉你,这样的数还不止一对呢!

【分析与解答】下面举出几个两数的积等于两数的差的实例:



同学们,你可再试着找一些。

4、关键在于观察

你在数学课上学了不少几何图形的知识,掌握了不少平面图形的求面积公式。但是有许多组合面积的计算,单靠这些知识是远远不够的,它更需要对组合图形的观察能力。下面就是一道考查你的观察能力的题目。试试看,你能很快做出来吗?

已知图内各圆相切,小圆半径为1,求阴影部分的面积。



【分析与解答】把半圆展开成整圆。可看出除小半圆外的阴影面积是大圆减掉6个小圆后的1/6,再加上小半圆面积即可。

5、扩大鱼池

养鱼专业户张强,去年承包了一个叫“金三角”的鱼池(如下图),喜获丰收。为了进一步增产,决定把鱼池扩大。但有这样的要求:①扩大后的鱼池必须仍是三角形,保持“金三角”鱼池的称号;②扩大后的鱼池面积是原面积的4倍;③原鱼池的三个角上栽的3棵大柳树不能移动。你能替张强设计一个施工草图吗?



【分析与解答】金三角”一定是一个很特殊的三角形。扩大后的面积是原面积的4倍,则还差三个“金三角”,拿三个“金三角”去原“金三角”拼摆,即可做到柳树不会移动,而且面积扩大4倍,而且形状还是“金三角”。自然就能发现这个“金三角”肯定就是“等边三角形”。

6、五个少年

五个少年,依次相差一岁,在1994年共同发奋学习,到公元2018年时,他们都在科学上做出了很大贡献。那时他们的年龄也增长了,他们五人在公元2018年的年龄之和正好是1994年的年龄之和的3倍。问在1994年时他们的年龄各是多少?

【分析与解答】设年龄为中间数的一个少年在1994年是x岁,则其余四人的年龄分别为x-2岁、x-1岁、x+1岁、x+2岁。

在1994年五人年龄之和为(x-2)+(x-1)+x+(x+1)+(x+2)=5x 

2018年五人年龄之和为5x+24×5=5(x+24)

因为这五个少年2018年的年龄之和是1994年年龄之和的3倍,所以

5(x+24)=3×5x,解得x=12

因此,这五个少年的年龄分别为 10岁、11岁、12岁、13岁和 14岁。

7、一本书的页数

我们知道印刷厂的排版工人在排版时,一个数字要用一个铅字。例如15,就要用2个铅字;158,就要用3个铅字。现在知道有一本书在排版时,光是排出所有的页数就用了6869个铅字,你知道这本书共有多少页吗?(封面、封底、扉页不算在内)

【分析与解答】仔细分析一下,页数可分为一位数、两位数、三位数、……。一位数有9个,使用1×9=9个铅字;两位数有(99-9)个,使用2×90=180个铅字;三位数有(999-90-9)个,使用3×900=2700个铅字;依此类推。

我们再判断一下这本书的页数用到了几位数。因为从1到999共需用9+2×90+3×900=2889个铅字,从1到9999共需用9+2×90+3×900+4×9000=38889个铅字,而2889<6869<38889,所以这本书的页数用到四位数。

排满三位数的页数共用了2889个铅字,排四位数使用的铅字应有6869-2889=3980(个),那么四位数的页数共有3980÷4=995(页)。因此这本书共有999+995=1994(页)。

8、画一画

下面这些图形你能一笔画出来吗?(不重复画)



【分析与解答】一笔画需要解决两个关键问题。一个是这幅图能不能一笔画?另一个是,若能一笔画,应该怎样画?对于这两个问题,数学家欧拉在1736年研究了“哥尼斯堡七桥”的问题后,做了相当出色的回答。他指出,如果一幅图是由点和线连接组成,那么与奇数条线相连的点叫“奇点”;与偶数条线相连的点叫“偶点”。

例如,在图17中,B为奇点,A和C为偶点。



如果一幅图的奇点的个数是0或是2,这幅图可以一笔画,否则不能一笔画。这是对第一个问题的回答。欧拉又告诉我们,如果一幅图中的点全是偶点,那么,你可以从任意一个点开始画,最后还回到这一点;如果图中只有两个奇点,那么必须从一个奇点开始画,并结束于另一个奇点。

本题的4幅图,其中图(1)、(4)各有两个奇点,图(2)、(3)的奇点个数为0。因此这4幅图都可一笔画。画法请参看图



9、越减越多

同学们对这样的问题可能并不陌生:“一个长方形被切去1个角,还剩几个角?”这种题的最大特点是答案不唯一,要根据去掉的这个角的不同情况来确定“剩角”的多少。

以下3幅示意图,表明了3种不同情况的3种不同答案。其中第3种情况最有趣,长方形原有4个角,切去了1个角,反而多了1个角,出现了越减越多的情况。下面一道题的思考方法与上题类似,看你能否正确回答。



“一个正方体,锯掉一个角,还剩几个角?”请注意,这里的“角”是立体的“角”,它不同于平面上的角。

【分析与解答】锯掉角的情况有4种,因此剩角的答案也有4种(如14图所示)。



10、河边洗碗

有一名妇女在河边洗刷一大摞碗,一个过路人问她:“怎么刷这么多碗?”她回答:“家里来客人了。”过路人又问:“家里来了多少客人?”妇女笑着答道:“2个人给一碗饭,3个人给一碗鸡蛋羹,4个人给一碗肉,一共要用65只碗,你算算我们家来了多少客人。”

【分析与解答】题目给出了碗的总数,以及客人和碗的关系。如果能求出每人占用多少只碗,那么就可以求出客人的数目了。